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THREE-DIMENSIONAL STRESS SYSTEMS IN ISOTROPIC PLATES. 1
By A. E. GREEN
(Communicated by Sir Geoffrey Taylor, F.R.S.—Received 14 August 1947)

General analysis is developed for certain three-dimensional stress distributions in a plane plate of
infinite extent but of finite thickness which contains a circular cylindrical hole, the faces of the
plate being free from applied stress. The analysis is used to solve the problem of a plate under uniform
tension in a direction parallel to its faces, the cylindrical hole being free from applied stress.
Numerical work is carried out for the case when the diameter of the hole is equal to the thickness
of the plate.

1. INTRODUCTION

1-1. The problem of finding a complete solution of the elastic equations of equilibrium for
stresses in a plane plate is one of considerable analytical difficulty. Many of the difficulties
are removed when the problem becomes one of two dimensions which happens for a very
wide plate when the state of stress is known as ‘plane strain’, or for a very thin plate when
the state of stress is known as ‘plane stress’. Filon (19o3) greatly extended the scope of the
two-dimensional analysis by his well-known theorem of ‘generalized plane stress’ in which
the value of the stress zz throughout the thickness of a plate whose faces are parallel to the
(x,y) plane is neglected and only the average values of the remaining stresses are evaluated.
This procedure has been widely adopted and great advances have been made in recent
years in solving special problems, particularly with the help of complex variable analysis.
Some discussion has taken place over the validity of the theory of generalized plane stress.
Southwell (1936) pointed out that it was in fact only necessary to assume that the average
value ZZ of Zz taken through the thickness of the plate is zero. Alternative assumptions about
2z have been suggested by Green (1945) and Ghosh (1946 a), but the validity of these assump-
tions is still unknown. Ghosh (19465), in a slightly more general discussion than that given
by Southwell (1936), has shown that a state of stress is possible in a plate with zz identically
zero, but the conditions at the edge of the plate cannot then be arbitrarily prescribed; so
that in a problem with given boundary conditions it is still not known how near the average
stresses found by the generalized plane stress theory are to the actual average values found
from a complete three-dimensional solution of the elastic equations.

It is therefore desirable that complete three-dimensional solutions should be obtained at
any rate for some of the standard problems dealt with by the generalized plane stress theory,
in order to get some accurate estimate of the validity of the theory. Such solutions have also,
of course, considerable intrinsic interest from the mathematical point of view. The simplest
problem from the point of view of the mathematical analysis appears to be that of an isolated
force uniformly distributed through a plate of finite thickness and acting parallel to the
faces of the plate. This problem, which has limited physical application, is considered else-
where. Problems which have considerable physical as well as theoretical interest are those
of stress concentrations in plates containing holes of various shapes, and in the present paper
analysis is developed for three-dimensional stress systems in a plane plate which is infinitely
extended in two dimensions, but which possesses a finite thickness and contains a circular
cylindrical hole, the stresses being symmetrical about the plane midway between the faces
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562 A. E. GREEN ON THREE-DIMENSIONAL

of the plate and about a plane which is perpendicular to this plane. It is hoped to make
extensions to anti-symmetrical systems later. -

The analysis is used to solve the particular problem of a plate under uniform tension in
a direction parallel to its faces, the cylindrical hole and the faces of the plate being unstressed.
This appears to be one of the simplest problems of stress concentration which is not accurately
a two-dimensional stress problem.

2. STATEMENT OF PROBLEM AND METHOD OF SOLUTION

2-1. Consider an isotropic elastic plate of uniform thickness 24, bounded by the planes
z = 4 h and infinitely extended in the (x,y) plane. The plate contains a circular cylindrical
hole of radius a defined by x¥2+y? = 4% Attention is confined to stress systems in the plate
which are symmetrical about the middle plane z = 0 and also symmetrical about the plane
y = 0. The faces of the plate z = -+ % are free from applied normal and shear stress so that

Z—FR=E =0 (z=1h). (2:1-1)

The stresses %%, 7y and &y will usually tend to definite values at infinity. In particular, in
the tension problem, T T, >0, F—0 (x>t (21-2)
where 7'is a constant.

At the surface of the cylindrical hole the stresses 77, 70 and 72 have prescribed values. Thus
7r=f0,2), 10=g(0,2), 7z=h0,2) (r=a), (2:1-3)

where f(0, z), g(0,z), h(0,z) are given functions, all even in the co-ordinate z and sym-
metrical about # = 0, (7,6, z) being cylindrical polar co-ordinates. In the tension problem
when the surface of the hole is free from stress f, g, 4 all vanish.
In a large number of problems the stresses 77, 00, 2z, 7z can each be expressed as the sum
of terms of the form
> (1, z) cos nd,

while 76, 0z can be expressed in the form

> 8,(r,z) sinnd.

In the tension problem the stresses reduce to the above forms where the summations for n
only extend to » = 0 and n = 2. It is found that the stresses corresponding to each value of
n can be dealt with separately, so attention is directed to stress systems such that 77, 00, zz

and 72 are each of the form £.(7, 2) cos 6,
while 70, 0z are of the form 8,(7,2) sinnf.

2-2. In order to fulfil the above conditions fundamental solutions of the elastic equations
of equilibrium are found which satisfy the boundary conditions (2:1-1) and the conditions
at infinity (2-1-2), and these solutions are combined in an infinite series so that the boundary
conditions at the edge of the hole may then be satisfied. At the hole r = a the stresses 77 and
7z can be expanded as Fourier cosine series in z in the range —/A<{z<(h, and the stress 70
can be expanded as a Fourier sine series, in general for — %<z </%. The boundary conditions
(2-1-3) are then satisfied at r = a for all values of z by equating coefficients in the Fourier
expansions. Since there are 0032 terms in the Fourier expansions of 77, 70 and 72 at r = a,
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STRESS SYSTEMS IN ISOTROPIC PLATES 563

it is necessary to find 003+ 2 1ndependent fundamental solutlons of the elast1c equatlons
satisfying (2-1-1).

The problem of the convergence of the solution in the form of infinite series is a difficult
one and has not been solved. In practice, however, approximations to the complete solution
must be made and only a finite number of terms of the series are used.

3. EQ_UATI()NS OF EQUILIBRIUM: GENERAL SOLUTIONS

3-1. The equations of equilibrium of a homogeneous isotropic elastic solid when body
forces are absent are of the form

dxx  Oxy 0z

6x+8y+0z =0

0xy gy  dyz | o
0xz (7yz 0zz — 0

ox 0z ’

and the components of stress ¥X, ¥y, z2, §z, zX, Xy are given in terms of the components!of
displacement (u, u,, u,) by the equations

du (0u, OJu
o = i SR e S e
xx*/lA+2,uax, yz /4( 3y+(?z),’
d du, 0 ,
=0 oy, (3G, (312
d d d
o asius a-ualg)
du, du, Ju
o Ty T2 1.
where A= Fray 6y+ 3 (3-1-3)

A, p being the elastic constants of Lamé.
If the expressions (3:1-2) are substituted in (3-1-1) the equations of equilibrium take

the form ,. PRI
2 o — 2 J— o]
IVt 1 0.) + () (3x’ 77 aZ)A 0, VIA=o. (3-1-4)

Formulae for the displacements and stresses will mostly be required in cylindrical polar
co-ordinates (r, 8, z), so for reference the necessary results are recorded here. Thus, in terms
of the components of displacement (u,, uy, u,) the stresses are

= A2, ézzﬂ(rl%% %lg)

08 = A\A+2u (“;‘;u ) 72 = (%Z;Jr‘;“r) (3-1-5)
du, —  1du, Juy u,

=AM D=l 55+ 5 =)

3-2. Some general forms of solutions of equations (3-1-4) ‘have been used by Dougall
(1904, 1914) in discussing stresses in plates and cylinders, and these solutions form a con-

venient starting-point for the present work. For reference these solutions are called here
69-2
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564 A. E. GREEN ON THREE-DIMENSIONAL

A4, B, C, D. They express the components of displacement and stresses in terms of four
harmonic functions ¥, , ¢, ¥, i.e. functions which satisfy the equation

V2(¢s o, ¢9X) =0, (3'2'1)
and results are given below for both Cartesian and cylindrical polar co-ordinates.
Solution A " — 2{91_#) v az/( “ =0,
' dy Y Zow>
20y oy (5:2:2)
“=papr M2 A0

0%y zy 0%
ou gz o axaz 20
21y bz @y 0 19y 0y 10y | (3-2:3)

o 00z 2 rdz 2w rdr R rop

m20% 200 . &
ou " rara0 page THI0=0
Solution B y 0w y ) y )
C CN Y v 9y’ z::a‘“a
* d ‘ (3-2:4)
_Ow 10w A0
b= YT a0 7T
z_ Pw zy e zz 0%
2u  0xdz> 2u dydz> 2w 0z’
Z_ 0w 0z_1 0% 1% 10 (3-2:5)
2u  0rdz> 2u rdfdz’ 2u rdrdd 1206’
A e
T o 2w a2
Solution C 0¢ 0% _ 09 0%
e =0 g T2 5002 W %9y 220000
0 0%¢ _add 2z 9% o
N e S A A 7 2 (8:2:6)
99 5, 0% 02
Uy =—ay +2z 9520 A:2(1—a)a€,
zx 0% Loz Py oz % %)
2u  0xoz 0xdz?’ 2u (?yaz+ dy 0z’
0, 0 0z 10 2z 0%
2u  drdz 0rdz®> 2u rdfdz " r 300z’
=5 2 3
z_ 0%, 9,0
2u 022 0z3
(3-27)

0« adp 2z P 2z 9%

o rara0 10 r 0rdbaz 1 3692’

% ¢ 24
ou = %o T2, T (@ 8) s

ﬁ+979_< 609 9,8

ou 922 "z
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STRESS SYSTEMS IN ISOTROPIC PLATES 565
Solution D oy Ly dy
1= 2% 53 2+(a+5)a, u, = 2y 5% 2+(o¢+5)a ,
92 9 at50 92
4, — 2 X (a+5)al‘-, ty — "1 -(,)—f—,f, A:Q(l—a)BZlg, . (3-2-8)
_ o 02x ox _ X | e 20X
T 77 P oy PR P 7 P Sl o
ZX (?3X 0%y By a%x
o~ %9 P axaz Y owtaz Y oxdyoz’
P, P 3y Py
on” Y93 oyoz “oxdydz Y ayoz
zz a3y 3y PPy
u BT e dyoz: 2 9922
L, Px P 0%y
RN S

ou Soroz T o oz
Oz 40 0%
2u 1000z drafiz’

! (3-2+9)

0 . 10% 10y a3
b= @ 0o o) aa
7 2y oy 0%y
ou= ) g2 gt (a5,
rH—t%’ a3x 0%
o Yo gt =k

The constant « which appears in solutions C and D is related to A, # and to Poisson’s ratio
n by the equations A+ 3u

= = 3—4. 3:2-10

4. FUNDAMENTAL STRESS SYSTEMS
4-1. Itis convenient to introduce non-dimensional co-ordinates p, { defined by*
rth=p, zlh=1{ alh=A, (4-1-1)

so that the faces of the plate are given by { = 4-1 and the cylindrical hole by p = A.
The simplest type of solution of the elastic equations containing cos nf, sin nf is obtained
by putting » (solution B) in the form

w, = a*(A/p)"cosnf (n=1), (4-1-2)
so that, from (3-2-4) and (3-2-5),
u, = —na(Ajp)**tcosnf, uy;=—na(Alp)* sinnl, wu, =0, (4-1-3)
7 n+2 A n+2 —

* Since Lamé’s constant A does not appear in the rest of the paper it need not be confused with A defined
in (4-1-1).
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566 A. E. GREEN ON THREE-DIMENSIONAL

This is accurately a plane stress solution and therefore satisfies the boundary conditions
(2:1-1) on the faces of the plate. It will be called ‘plane stress solution (a)’. No new results
are obtained by giving similar values to ¥, ¢, y.

4-2. The next group of solutions of types 4, B and C which are needed are given by

2 ) 1 .
]/f = d2ﬂn“2 {%—}‘2—('”?17"5;:“2} Sin 720 (n>2>, (4'2’1)
2
u, = 2nad*! {p§“+ 5(n *11) pn_l} cos nf,
2 .9.
Uy = 2aA"~ l{lzgl—l— ( ne 1> — l}smnﬁ, (4-2-2)
u, =0,
o 2
zz = 0, ;; = — {Qn(—z—:};)} + n-} cos nd,
7z 2l ) 2n(n+-1) n} .
2 __ ARG osnf. anin n 6.\ .9.
oy g cos nf, % —An { P +,0" sin 70, (4-2-3)
62’»; = %’%?sm nf, 7400 =0
2
0 = a*A"? {,% -+ Q(n:*ll')'ﬁ"té} cosnf (n>=2), (4-2-4)
[ ng? n—2
U, = al® l{[‘g‘;f + 2(71 ’]“) n~1} COS 720,
2 1 .
Uy = —nald™"! {,05“ +2(n- 1) pn_l}sm nb, (4-2-5)
n—1
L= -2@—7—1»} cos nb,
p
zz 22 o e(n+1) 8 n—z; )
Zl = ;n—cos ntl, Z‘ = A { p"+2 -+ 2 cos nf,
% - —%’%?cosnﬁ, g’% = /I"{(n ;;3 ¢ +2,0 }sm nd, (4-2-6)
fz (. . A0 21 |
YRR sin nf, o cos nf. J
= a2\ 21@24 b cosnf (n=2) (4-2-7)
¢ a lpn ! 2(72__1)'011 -2 = =)

n(o+4) 2 n—2)a
O Lo TR "

4) (2 . :
Ug = —nadr~! {(“;;Jr? g -+ é(n__olc) pn—‘l'} s nﬁ, - (428)
n—1
(4 20) ak rgcos nd,

8

p?l
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STRESS SYSTEMS IN ISOTROPIC PLATES 567
5 n 7 2 —
;—; = —%cos nd, %‘ = A" {n(n+ l/)),,<32+ 4¢ +a(n +2i21 12} cos nf,
72 6nln 0 1 4
;% o= ——%ﬁlﬁécos nd, ;% = nzl”{(n+ ?O,Ei‘j )& +2,0 }sm nd, ’ (4-2+9)
g; = G;Ztnlgsm nd, rr;;tb?ﬁ:: 2(05;}16) A cos nd.
The case n = 1 requires separate treatment. Thus . A
a2 2
=-—{=—plo }sinﬁ, 4:2-10
V=7 { , ~Plogy (4-2:10)
2
u, = 2a {/ﬁ ——logp} cost,
2 .2.
u0:2a{/i)—2 +10gp+l}sint9, (4-211)
u, =0, ,
7 2
zz =0, m_ /l{4€ }cosﬂ
‘ 2p P
722X 0 4
w2 0s 4, YR sind, r (4-2-12)
0z 2X¢ P
'271 —IB*Q sin 6, 77"|~00 =
a’ =€2 .
w=—~+{>—plo }co 0, 4-2-13
1 \p ~Plogpjcos ( )
. 2 ‘ )
U, = ~a{;§+10gp+lfcos€,
2
Uy = —a{%@—logp} sind, (4-2-14)
U, = 2Z€cost9
zz 21 " 202 1 )
5 7}—(:050 % A{F—;}cosﬁ,
7 _ 2 0202 1.
5= cost, ﬁxa{ > +p} sind, | (4-215)
0z 2A¢ . 77400 21
o= T ind, 2% = ——cosf. ,
2
¢ = %{Q—plogp} cosd, » (4-2-16)
p
2
U, = — {( /;w)é' +oclog,o+oc}c0s0
9 :
Uy = —a{(gj;:) ¢ —cxlogp; sin 4, (4-2-17)
u, = (—é—;?)-ig cos f,
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=5 ¢ % 2 -
-Z—§=—~2—Acosﬁ, [_7_211{2(064;4){ +2=8
2 2u p p
iz el 0 (2(a44) 2 a
o~ «»/?..cos g, o /1{-—~~b~3——-- +,5} sin d,
.ﬁf S @égsin 0, W? b0 = 2(—6)4 cos (.
2u P 2 p

(4-2-18)
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A second plane stress solution of the elastic equations which will be called ‘plane stress
solution (b)’ can be found by taking the combination 4y +w+¢ of the stress functions
(4:2-1), (4-2-4) and (4-2'7). For reference this will be denoted by

4,40, + s (4-2-19)

and the corresponding displacements and stresses for n>>2 are

y —a Aiz—l{(,%@iﬁg? n ?ﬁé%hggiggzﬁ;i?)} cosnt,

Uy = azi"“l{(g ;nﬁ)l n? ; (nnilﬁ ;ﬁ’f} sinnf, (4-2-20)

u, = ?E:%%a_/l’:}g cos nd,

% == /l”{n(n i 1/zngo;m 3¢ + (-t 22)/)(:6 - 7>} cos m9,\

;,%: {In{n(n+l/)],l£?;_3) €2+n(;;n7)}sin nd, (4-2-21)
ﬁ; 00 _ 2« ;:) L

The ‘plane stress solution (b)’ for the case n=1, found from (4:2:10), (4:2:13) and (4-2-16), is

(9 __ 2
ur:a{(s pgo —(9+a) logp-—l——oc}cosﬁ,
— 2
4y — a{(_?’_p‘jig (9 1a) log p+s}sin 0, (4-2-22)
uz — g(i_ﬂ cOS 0,
p
~~ . 2 .
a /1[2(06 33)§ 4 15} cos,
2n "L p p
) _ 2
- /1{2(“ 3)¢ +“+l}sin¢9, (4-2-23)
2u P P
400 _ 2(a—17) X cos g
2u p ' )

Another combination of the three solutions (4-2-1), (4-2-4) and (4-2-7) which is required is
(a4+1) ¥+ (a—2) 0+¢.
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STRESS SYSTEMS IN ISOTROPIC PLATES 569

This will be called a ‘plane strain solution’, since the displacement u, vanishes and the
remaining displacements and stresses are independent of the co-ordinate z. When n>2 the
displacements and stresses are

. n—1
u {Za +2(n hll} C'ZA—T cos nf),
n—1 o
(4-2-24)
—2a+2(n—1)|al*!
Uy = { } —— sinnf,
n—1 p
_;1 — (n + @_&l cOoS nﬂ, gq— 27”1” sin 7l0
2 o # (4-2-25)
00 8\ zz _ SM"
! = ——cosnf, e cos nf,
2 " 2
and for n =1, u, = —2a{2xlog p+a—1} c?s 0, (4-2-26)
u, = 2af2alogp-a+1}sind,)
%:} — ?_(i“_,—l:i)_/! CcOS 0, %ﬁ— = g(i“—:-l-)-*/} Sin 6,
E P ;e r (4-2-27)
7700 84 Z2 L
S =~ cosl, = cosf.
2u p 2

This ‘plane strain solution’ does not satisfy the boundary conditions (2:1-1) at the faces
of the plate. These conditions can, however, be satisfied by adding stresses which tend to
zero at infinity and which cancel zz [(4-2-25) and (4:2:27)] on the faces { = 4-1 of the plate
without introducing shear stresses zx and zy on these faces. Suitable stresses for this purpose
are found from solutions of the types B and C in the form

® = COS nﬁf Sflu) J,(up) cosh uf du,
(4-2-28)
= COs nﬁf J,(up) cosh ul du,

where J,(up) is the Bessel function of the first kind of order n. The arbitrary functions f(u),
g(u) have to be chosen so that when { = + 1 the shear stresses zx, Zy are zero while the normal

stress zz takes the value n
zz _ 8yh

2

~(p=A). (4-2-29)
Thus, from (3-2-5) and (3-2-7),

fwu{f(u) sinh u+-g(u) (sinh u+ 2ucosh u)} J,(up) du =0,

(4-2-30)
© 2)n
f u?{ f(u) coshu—g(u) (cosh u—2usinhu)} J,(up) du = 8—’%—/}— (p=R).
0
These integral equations may be solved by using the result (Watson 1944, p. 405)
o J (W) J,(up) A 2
fo Sy = S0 (p=An>0). (42:31)
Thus f(u) sinh u+g(u) (sinh u+2ucoshu) = 0,
4:2-32
f(u) coshu—g(u) (coshu—2usinh ) = lg’l”_},‘iﬁ{_(i’{) ) ( )

VoL. 240. A. 70
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570 | A. E. GREEN ON THREE-DIMENSIONAL

and hence S(u) = 16gnh?(sinh u+2u coshu) J,(ud) [3Z,) (4:2:33)
g(u) = —16ynh?sinh u J,(ud) [u3Z,

where 2 = 2u+sinh 2u. (4-2-34)

With these values for f(u), g(«) the integrals (4-2-28) are convergent when n>2 but they
diverge at the lower limit for » = 1. The divergent terms (which represent a rigid body
displacement) are, however, trivial and may be removed by adding suitable functions in
the integrands which contribute nothing to the stresses. The final forms for the functions
¥, w and @, which together give a system of stresses which satisfy the boundary conditions
(2-1-1) at the faces of the plate, are

o= (et )@l

1 N
IO" 2(;2h-——1)~10" 2} sin nﬁ (n = 2) )

1) g2 (2 (4-2-35)
(a—}—/{)a {é plogp}smﬁ (n=1),
nea[C? L
(l)O = ((Z—"Q) dz/l z{ﬁﬁ+ézh’:-iypﬁ:2: COS nﬁ |
_I_lﬁmhzcosnﬁfw(smhu+2ucoshu2t;]z,,:(u/l) J,(up) coshugdu (n>2),
92) 42 (&2 ’ (4-2-36)
(ac A)a {i plogp}cosﬁ
© ((sinh « 4 2u cosh «) J; (ud) J, (up) coshul 3Ape
+1677h2<:osﬁf0 {( z)¢3211( RACTY ¢ I'L(;u du (n=1)
_ofE? 1
— g2)n-2]> e
Py = a%d {p"+2(n— 1) ,o”"z} cos nf
— LGymi? cos ”ﬁf (ud) J, (up)3s1nhu cosh qu (n=2),
u' (4-2-37)
a2 (2
= Il—p——plogp} cost
| © (Jy(ud) J,(up) sinh u cosh uf Ape‘“}
- 2 1 1 _ _
169h cosﬂfo{ 55 T6u du (n=1).

These integrals may be differentiated the number of times which are required in order
to obtain the displacements and stresses from (3-2:4)—(3-2-7). Thus, for n>>2,

. n—1 4
U, =2a+2(n 1)} al 16 hf _E{LL(“E)
cos nd n—1

| x {(sinh 4 2u cosh u) cosh u{ —sinh u(oc cosh u{+2ulsinh ul)} du, (4-2-38)
Uy 20 +2(n—1)} al"t 1677n2/zf°°J (ud) J,(up)
sinnf { n—1 prl ADY
x {(sinh u+ 2u cosh u) cosh u{ —sinh u(« cosh u{+4-2u{ sinh u{)} du, (4-2-39)
u, J(ud) J,(up)
cosn—ﬁ = 167 hf Z
% {(sinh u 4 2u cosh u) sinh «{ +sinh u(a sinh u{ —2u{ cosh u{)} du, (4-2-40)
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STRESS SYSTEMS IN ISOTROPIC PLATES

and when n = 1,

w, o
cosh = 2a(20logp+a—1)
+16 hj [ M {(sinh #+2u cosh «) cosh u{
—sinh u(a cosh u{ + 2u{ sinh u() }—”Ae ]du
Y _
Sinﬁ~2a(2alogp+oc+1)

1 67]hf [ l(u/1 l(up 51nh u-+2u cosh u) cosh u€

— smh u(ocosh ul+ 2u sinh uf)} — %j] du,

the formula (4-2-40) for u, being valid for n = 1. Also
T »J,(ud) N
Sucosd 1 Grynfo S [{{(1 —«) sinh u+ 2u cosh u} cosh u{
— 2u{ sinh u sinh ul} J; (up) + (3 — ) sinh u cosh ul J, (up)] du

2022 (o]
pn

2(a+3) A
Y
16 [ 400 Ut ~p o)

usinnf — p* ), Ul
% [{(1 —«) sinh u+ 2u cosh u} cosh «{ — 2u{ sinh u sinh u{] du

b

(n=1)|

and, for n>1,

Z 3277nfw ‘-{"Q@—gjﬂ(—uﬂ) {cosh u sinh u{— {sinh u cosh u{} du,
0

24 cos nf)

0z 32pm2 [ J,(ud) J,(up) o N
Susinal — " p fo - {cosh u sinh u{— {sinh u cosh u{} du,

zz 817/1" J,(ud) J,(up)
Qucosnf +32m f uZ .

x{(sinh u+ u cosh u) cosh u{ — u{ sinh  sinh u{} du,

JEI S ) L)
2u cos nf o

x [{(e—5) sinh u +- 2u cosh u} cosh u{ — 2u{ sinh u sinh u{] du.

571

(4-2:41)

(4-2-42)

(4-2-43)

(4:2-44)

(4-2-45)

(4--2-46)

(4-2:47)

(4-2-48)
70-2
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572 A. E. GREEN ON THREE-DIMENSIONAL

It will be necessary to represent these displacements and stresses by Fourier expansions
in the co-ordinate { and the required results may be obtained by using the expansions

ST (—1se<), (4:2:49)

cosh ul = usmhu{ — 2 z (=

= -2

coshu sinhu

{sinhul = s
ucoshu (u®>—r’n?)sinhu
+22 {u2—|—72ﬂ2 ﬁ (u2+r?3)712)2 }(_)rcosrﬂé' (—1<g<1), (4-2-50)
: : e (=) rasinra )
smhuC=251nhu£1< )u2+72712 (—1<(<1), (4-2-51)
coshu 2usinh u ol N
{coshul = Z {u2+r2ﬂ2 (u2+r27,2")'”2} (—)rasinral (—1<{<1l). (4-2-52)

Term-by-term integration of the various Fourier series presents no difficulty so that, with
the help of the expressions (4:2-49) to (4-2-52), the complete displacements and stresses
which satisfy the boundary condition (2-1-1) can be put in the forms

o0
= {a(’) + 3%+ > %, cos mg} cos nd,

r=1

Ug = {ﬂ6+%f’/5’0+ ioﬁr cos rﬂg} sin nf, (4-2:53)

o0
u, = : > %, sin 7’7T€> cos nf,
r=1

-
~~

7= 2u {ag—l— 1%, -+ E %, cos 7’7T§} cosnb,

r=1

3)

= 2u {b + 39,4+ § 05, cos rﬂg} sin nd,
r=1

7z = 2/4{ % O¢, sin r7r§} cos nd,

. (4-2-54)
bz = 2/4{ > % sin rrr{,‘} sin nd,
r=1
zz = 2,u{e6 + 3§ %, %"er cos r7r§} cos nf,
r=1
00 — 2ul fo+ 3%+ oi‘)frcosrﬂg}cosné?,
r=1 )
, atn-—1) a/l" 1
where ay = Aatn—1)alr n=2),
T
= —2a(20logp+4oa—1 n=1),
2 ( gpl) A 1) . (+:2:55)
i 2(—oa+4n—1)at™” -
ﬂo = (n—l)p”‘l (n;Q)a

= 2a(2alogp+a-+1) (n=1), )
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STRESS SYSTEMS IN ISOTROPIC PLATES 573
dy=—2(1+2) 1jp  (1>2),
= —2(at+3)Ap (n=1),

by=—2aktfpr (n2),

(4-256)
=2(—1)Afp (n=1),
Getfy = —shfpr (n=1),
€y = —8yA"fp"  (n=1), J
and for >0,
0, 7 / oh2 n __ r }ﬁiﬁ 9.
o, = 128ynh(—) fo J. () J' (up) sinh u{uz T s (4-2:57)
128yn2h(— )i . Vi r2m? du
0 — 5N T 2 _ il .
5, = — fo J,(ud) J, (up) sinh u{u2+r2ﬂ2 (u2+72ﬂ2)2} e (4-2-58)
] ‘2—77 2772 du
0y — __\r+l 2 _ ] . .
y, = 128gmrmh( — )+ fo  (u) J. (up) sinh { s (u2+r2ﬂ2)2} e (4-259)
® . J,(up) +J, (u r2m2J) (up) \ du
o, = 128(—) [ ) sinbeu( WAL 00D _TE )\, (4:2-60)
128yn2(—)" = , . r2m? du
o, = L [ L )= sinbeal o T (ae2e)
»J.(ul) J,(up) usinh?u
0, __\r+1 n n D
¢, = 128ynrm(—)"* ‘[0 (@ rr)7s du, (4-2-62)
128yn*rm(— )" (© J,(ud) J,(up) sinh?u
07 /. n n , D
dr - p) JO (u2 _i__72ﬂ2)2 E d (4 2 63)
J,(ud) J,(up) u?sinh? u
O, = 128yn(— f u2—+ r§ﬂ2)22 — du, (4-2-64)
0. 1o A .y i rem? du
a,+ % = 128yn( ) fo () T (wp) simhul 5 Lot +r2n2)2}‘2° (4-2-65)

4-3. In this and the next two sections co3 solutions of the elastic equations of equilibrium
are found which give zero stresses at infinity and which satisfy the boundary conditions
(2-1-1). The functions ¢, , ¢ and y in the standard solutions 4 to D are harmonic functions
and the harmonic functions which are needed here are of the forms ‘

K, (mmp) cos mm: Szg,} (£31)

J,(up) cosh u{ cosnf.
Consider first the solutions of type 4 which are derived from the potential function
V., = a*I,(mnd) K, (mmp) cos mn{ sin nd, (4-3-2)

where m, n take all integral values, the constant factor I, (mmd) being included for con-
venience. I,(mnd) and K, (mmp) are the modified Bessel functions of order z of the first and
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574 A. E. GREEN ON THREE-DIMENSIONAL

second kind respectively. The corresponding displacements and stresses which are found
from (3-2-2) and (3-2-3) are

u, = p,, cos ma{ cosnf, Uy = v,,cosmn{ sinnf, ]

77 = 2ug,, cos mm{ cos nd, 70 — 24th,, cos ma{ sin nd,

- o " : (4-3-3)
72 = 2, sinmn{ cosnld, 0z = 2, sinmn{ sinnd,

00 2k, cosmn{ cosnl, zz =0, u,=0,

where U = 2an(A/p) I (mad) K, (mmp),

V,, = —2mmal I,(mnd) K, (mmp),

¢ — 20(Afp)? L, (mmd) fmnpK,(mmp) — K, (mmp)},

= — (A[p)? L,(mmd) {m?n%p? KL (mep) —mmp K (mmp) +-w°K (mmp)}, | (4-5-4)

i,y = —nmn(2]p) I, (mn) K, (mmp),

Jm = m?m?A21 (mnd) K, (mmp),

k,+g,=0.

The system of stresses (4+3+3) satisfies the boundary conditions (2-1-1) when { = 41, without
modification.

4-4. The next set of displacements and stresses are derived from a solution of type B of
the elastic equations by using  in the form

w = (h*/m?n?) I,(mnd) K, (mmp) cos mn{ cos nd, (4+4'1)
and by substituting this function in equations (3-2-4) and (3-2-5). In particular, when
{ = 41, the shear stresses 7z, 0z vanish and

2z = 2u(— )" I (mmd) K,(mmp) cos nf. (44-2)

In order to satisfy the boundary conditions (2-1-1) when { = 4-1 it is now necessary to find
a stress system for the region —1<<{<1, p=4, of the plate which is zero at infinity and which
cancels the stress zZz on the faces of the plate without introducing shear stresses 72 and fz.
The solutions of types B and C which are given in (4-2-28) arc again suitable for this purpose
and the conditions at { = 41 now give

f: u{ f(u) sinh u+g(u) (sinh u+ 2u cosh u)} Lf,l(up) du = 0,
f: u?{ f(u) cosh u— g(u) (coshu—2usinh )} J, (up) du = (—)™ k2L (mmd) K, (mmp) (p=A).

(4+4-3)

The solution of these integral equations may be obtained by using the result (Watson 1944,
p. 429)

| : i%gﬂ du — I(mmA) K (mmp)  (p=A). (4-4-4)
Thus S(u) sinh u-+g(u) (sinh u-2ucoshu) = 0,
(=)"h2J,(ud) (4:4-5)

JS(u) coshu—g(u) (coshu—2usinh u) = = :
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STRESS SYSTEMS IN ISOTROPIC PLATES 575
and therefore flu) = (—)™h*(sinh u+ 2u cosh u) J, (ud)
u(W? +-mn?) 5 ’ (4-4°6)
() = (=)™ h?sinh u J, (ud)
glu) = u(u?+mPn?) = s

where 2 is given by (4-2-34). The final forms for the potential functions v, ¢ which together
give stress systems which satisfy the boundary conditions (2-1- 1) at the faces of the plate are,
for all integral m and 7,

0, = (B*[m*n?) I,(mm)) K,(mmp) cos mn{ cos nf
® (sinh « 4 2u cosh u) J,(ud) J,(up) cosh qu

—\m p2 o4
+(—)™h%cos nﬂfo w5 (4-4°7)
inh uJ,(ud) J, h
o (e RHDHD g

These integrals converge and may be differentiated the required number of times using the
formulae (3-2-4) to (3-2:7) in order to obtain the displacements and stresses, which are
as follows:

. A Jl
CO’; = (hfmm) I(mmd) K, (mp) cos mm{ + (—)" f uzli m2ﬂ2uﬂ
x {(sinh u -+ 2u cosh u) cosh u{ —sinh u(« cosh u{ + 2u{ sinh u{)} du, (4°4-9.)
_\m+1 }l @ J /‘t J
== Cublpna?) () K, () cos - (=)™ ) ),
x {(sinh u+ 2u cosh «) cosh u{ — sinh u(« cosh u§+ 2u§ sinh u§)} du, (4:4-10)
u,
osal — (hjmm) I,(mnd) K, (mmp) sin mn{+ (— hf u24 h22ﬂ2

x {(sinh % 2u cosh «) sinh u{ 4 sinh u(a sinh u{ — 2u{ cosh ul)}du, (4-4-11)

L — I .(mnd) K, (mmp) cos mm{+ (— )’"fw (»J;t—‘]l(—@)
0

24 cos nf +m?n?) %
x [{{(1 —«) sinh u -+ 2u cosh u} cosh u{ — 2u{ sinh « sinh u{} J (up)
_ + (83 —a) sinhu cosh ulJ,(up)] du, (4-4-12)
2;‘—;1%—”6, = (nfm?n%p?) I (mud) {K,(mmp) —mmpK; (mnp)} cos mn{
L ) ) o)
P2 Jo u(u?++m?n?) X
X [{(1 —«) sinh u+ 2u cosh u} cosh u{ — 2u{ sinh u sinh u{] du, (4+4-13)
él/}‘gggﬁ@ = —1I (mnd) K, (mmp) sin mn{
o[ Tu(#0) ¢ oy sinhut— Csinhu coshulldu, (44
- ’ ) @)y coshu sinh u sinh u cosh u{} du, (4+4-14)
Syusin 6 i‘; = = (nfmmp) I,(mnl) K,(mmp) sin mn{

__\Ym+l1
—I—2( ,)o nfo u(iz(_lszl)zz 2() Z){COShu sinh u{ —{sinhu coshul}du, (4-4-15)
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576 A. E. GREEN ON THREE-DIMENSIONAL
Rz uJ,(ud) J,(up)
Spomsy =~ olmmh) Ko (mmp) cosmml 42—y [ "R )
x {(sinh u-+u cosh u) cosh u{ —u{sinh u sinh ul} du, (4-4-16)
00 sl ([ TE ) )
2ucosnf L,(mm) K, (mmp) cos mm{--(— )™ JO (W2 +m?n?) %

X [{(a— 5) sinh u+ 2u cosh u} cosh u{ — 2u{ sinh u sinh u{] du. (4-4-17)

Fourier expansions for these displacements and stresses will be needed. With the help
of (4:2-49) to (4-2-53), and observing that term-by-term integration of the resulting series
is possible these expansions may be expressed in the form

0
= {a,, cosmn{-+%™mxy+ > ™, cos 7’7r§} cos nd,
r=1

|
Uy = {/5’ cos ma{+3"fy -+ 2 mp_cos rﬂC} sin 0, (4-4-18)

=y, sin mn{ -} z 7, smmé’} cos nf,
¥ = 2ula,, cosmn{-- L ma,+ z ma, cos mg} cos nﬁ
r=1

= 2u!b’, cosmm{+$mby+ 2 mp, cos rvré} sin nf,

7z = 2u{c, sin mn{-+ z me_sin rﬂé’} cos nf,

o
[
@
— 2u{d sinm( + z d,sin | sinnd,
@
|

(4-4-19)
zz = 2u e, cos mn{+ L me -+ 2 e, COS rﬂ§} cos nf,
00 = 2u! [} cos mml -+ L mf, + z mf. cos 7’ﬂ€} cos nf,
where = (h/mm) I (mmd) K, (mmp), )
7/11 = — (nhjpm*n®) I(mmd) K, (mmp),
Y = — (hjmm) I (mmd) K., (mmp),
&, — 1,(mmd) K(mmp),
by, = (nfmntg?) 1, (omd) (K, ) —menp K o) | (4:20)
¢, — —I,(mm) K, (mrp),
d,, = (nfmnp) I (mmd) K, (mmp),
e:n = Mln(mﬂﬁ) Kn(mﬂp)’
ay,+fn = L,(mnd) K,(mmp), )
My — m r n u/l Jl(up) usinh®u U i} 72713 - 4
and "o, = 8(—)™" kf (W +-m2n?) % {u2+r§;2_ (u2+‘72772)2} ’ (a2
. ymrrelph e J (ud) J,(up) sinh?u 7 r2m? } .
f, = f (W men) 3 {uz';:';é,;é (@2 (4-4-22)
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STRESS SYSTEMS IN ISOTROPIC PLATES 577

T N2 L . S P oS
R I e T S PR
’"brzs("—“g;”“” f:J"W) {%(&Q;ﬂlllféf;.(gﬂ)}sinh?u {&2 f,»fzﬂ‘é““ o f;r;ﬂz)?} du, (4-4-25)
R N =
i SN O g it s
s R o
"a, ", = 8(*—)"’”f: J"(u/l()u;,:(l,fz)ﬂlg Sénmu dé";ﬁ,zﬂ2+ (ugf;fﬂz)z du. (4-4-29)

4-5. The third group of displacements and stresses which satisfy the boundary conditions
(2:1-1) could be found in a similar manner to that used in § 4-4 by starting with a suitable
expression for ¢ (solution C) and then adding other functions of the type given in (4-2-28).
It is convenient, however, to begin with solutions of the types B and D of the form

o' = —2(AR%/mn) I,(mnd) K, (mmp) cos mmn{ cos nﬂ,\

x=  (#2/m*n?) [ (mnd) K, (mmp) cos mmn{ cos nf. ’
The corresponding displacements and stresses are found from (3-2-4), (3:2:5), (3-2-8) and
(3-2-9). In particular, when { = 4-1, it is found that the shear stresses 7z, #z vanish and the
normal stress zZ is

zz = 4u(— )" mn{AL,(mnd) K,,(mmp) +pI,(mnd) K,(mmp)} cos nﬂ,}
(4+5-2)

d
= du(— )" mm o {I,(mm)) K,(mmp)}cosnf.

) (4.5.1)

Solutions of the types B and C which are given in (4-2-28) and which give zero stress at
infinity are now added so that they cancel this value of Zz on the faces { = 4-1 of the plate
without introducing shear stresses 7z, 6z on these faces. Hence

fw u{ f(u) sinh u+ g(u) (sinh u+ 2ucoshu)} J,(up) du = 0,

fw u?{ f(u) coshu—g(u) (coshu—2usinhu)}J,(up) du _ (4-5-3)

—2(= ) tmmi L (k) K (g (0>0),

and the solution of these integral equations can be found with the help of the equation
(Watson 1944, p. 429)

oSy (wh) J(uwp)u 1 d 5
fo (u®+m2n?)? du = 2mm dmm L(mmA) K, (mmp) - (p>4). (4:54)

Vor. 240. A. 71
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578 A. E. GREEN ON THREE-DIMENSIONAL
From (4-5-3) and (4:5-4) v
S(u)sinhu-+g(u) (sinh u+2ucoshu) = 0,
o 4(—)mm2n?h2 J, (ud) (4:5°5)
f(u) coshu—g(u) (coshu—2usinh u) = O =
and solving for f(u) and g(u) gives
flu) — 4(—)m m?m?h?(sinh u+ 2u cosh u) J,(ud)
: ) ’ (4:5-6)
(1) — 4(— )" I m?r2h?sinh u J,(ud)
g\u) = u(u?+m?n?)? % ’

where X is defined by (4:2-32). The final forms for the potential functions v}, ¢,,, x,, of the
types B, C, D respectively, which together give stresses satisfying the boundary conditions
(2-1-1) at the faces of the plate are, for all integral values of m and =,

w,, = —2(Ah2[mm) I, (mmd) K, (mmp) cos mm{ cos nf

it o[ (- 2ucosh ) J () J(up) coshul ,
+4(—)™m?n*h? cos nﬁfo w( 4 ) du, (45'7)

P A \mH] 222 “sinhu J,(ud) J,(up) cosh ul .
¢! = 4(~ )" m2a2h? cos nﬁfo w4 ) S du, (4:5°8)
X, = (h2[m?n?) I, (mmd) K, (mmp) cos mn{ cosnd. (4:5-9)

The integrals in (4:5-7) and (4-5-8) converge and may be differentiated the required number
of times using the formulae (3-2-4) to (3:2:7) in order to obtain the displacements and
stresses. From (4-5:7) to (4-5-9) and (3-2-4) to (3:2-9) the displacements and stresses are
found to be

(%ﬁ? = (hJmm) {—2mmp I, (mnd) K, (mmp) —2maA L, (mnd) K, (mmp)
)™ m2m2 w(ud) T, (up)
+ (a+5) L,(mmd) K, (mmp)} cos mal+4(— )™ m?*nm /zf u2 T mz,,z)z 5
x {(sinh u -+ 2u cosh ) cosh «{—sinh u(« cosh u{+- 2u{ sinh u{)} du, (4:5-10)
sulienﬁ (nh/pm?n?) {— (a+5) I,(mmA) K, (mmnp) + 2mad I, (mad) K, (mmp)} cos mmng
4(— )" nhm?a? [ J,(ud) J,(u
+ 4(—) , f (ug +)m?7r(2)2 > {(sinh u 4 2u cosh «) cosh u{
—sinh u(a coshul+2ulsinh u{)} du, (4-5°11)
CO“S = (hfmm) @mmp I, (mnd) K, (mnp) + 2mnd L, (mm2) K., (mp)
i ) )™ m2m u) J,(up)
+ (¢—3) I,(mmd) K,(mmp)}sin mal+4(—)™m?m /zj u2+m27r2)22
x {(sinh « -+ 2u cosh ) sinh «{+-sinh u(a sinh u{ — 2u{ cosh u{)} du, (4:5°12)
rr " ’ . s
ety = {(a4-3) Kinmp) —2map K, (map) — (o~ 1) K, (mp)} A(n;n?)M
’ ” m u u
—2mmAd,(mnd) K, (mmp)] cosmn{+4(—) mzﬂzf (CE==is>

x [{{(1—a) ) sinh # -+ 2u cosh u} cosh u — 2u{ sinh u sinh ul} J, (up)
+ (8 —a) sinhu coshulJ,(up)] du, (4-5:13)
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STRESS SYSTEMS IN ISOTROPIC PLATES 579
K
2usin nf m271 P

s [{{(0+5) (K, (mmp) —mmp K (mmp)} -+ m*m*p?K., (mmp)} I, (mm)

—2maM{K,,(mnp) —mmp K, (mmnp)} I,(mmA)] cos mm{
A [ ) 00) )}

p? u(@?+m?r?) 2
X [{(1 —a) sinh u+ 2u cosh u} cosh u{ — 2u{ sinh u sinh u{] du, (4-5-14)
7z " ,
Sucosnl = [{mmp K, (mnp) +mmnp K, (mnp) — 3K (mmp)} I, (mnd)
, , . \maoa U, (wd) T, (up)
-+ 2mad I, (mad) K, (mmp)] sinmn{+8(—) mﬂfo (@ L) s
X {cosh u sinh u{ — {sinh u cosh u{} du, (4:5-15)
bz : , .
Susinnl {4K (mmp) —mmp K, (mmp)} I, (mmd) — 2mad I, (mad) K,(mmp)] sin mn{
8 — ) em?a? (e ud, (uld) J,(u
+ ( ) ; fo (uzi_"iz 2522):{(:0shu sinh u{—{sinhu coshul}du, (4:5:16)
zZz ’ ’
Sucosnl 2mm{Al,(mnd) K, (mmp) + pI,(mnd) K, (mmp)} cos mn{
uJ,(ur) J,(u
+8(__)mm27r2f0 (&?1”22712522{(smhu+ucoshu) cosh u{ —u{ sinh u sinh u{} du,
(4:5-17)
FAO0 o1 ) K () 4 pI (mnd) K ()}
Qucosnf " g "
- _ymrt g [ () S, (up)
+(T—a) I(mad) K, (mmp)] cos mal +4(— )+ mx L e
X [{(«—5) sinh u+ 2u cosh u} cosh u{ — 2u{ sinh u sinh «{] du. - (45-18)

These displacements and stresses can be expanded in Fourier series. Thus, using (4-2-49)
to (4-2-53), and noting that term by term integration of the resulting series is possible,

=& cosmm{+3mE,+ Z mE_cos mg} cos nf,

{ cosmn{+ %™y, + Z ™y, COS mg} sin nd, (4-5°19)

rsinmm+ z mr,sin rﬂg} cos nd,

~

= 2uiu,, cosmn{+ % ™u,+ z ™y, COS mg} cos nd,

r=1

7z = 2u{w,, sin mn{ -+ Z ™, sin rnC} cos nd,

2,u{ cos mn{+ % ™v,+ 2 ", COS r7r§} sin nd,
é (4-5-20)

bz — 2uix, sinmn{+ Z myx, sin rw{} sin nf,

H

2uly,, cosmnl+ % ™y, + 2 Y, COS TﬂC} cos nd,

H

24 {z cos mml+ %™z, 2 mz,COS r7r§} cos nd, J
r=1

71-2
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580 A. E. GREEN ON THREE-DIMENSIONAL

= (h/mm) {—Qmﬂpln(mml)K (mmp) —2mad I'(mmd) K, (mmp) + (a+ 5).1,(mnd) K,,(mmp)},
1 — (nhlpm2n?) (2mad Ly(mmd) K, (mp) — (a-+5) L, (mm) K., (mmp)},
7, = (hjmm) {2mmp I (mnd) K (mmp) + 2mmd I,(mnd) K, (mmp) + (a—3) I,(mmd) K, (mmp)},

n

(4-5-21)
— {(o+5) K}(mmp) — 2mmp K (map) — (a—1) K, (mmp)} I, (mmd)
— 2maAl, (mmd) K, (mmp),
Vi = e T 5) LK, (romp) — g K )} -y K, ()} 1 ()
— 2mmA{K, (mp) —mmp K (mmp)} I,(mmd)],
w,, = {mmp K, (mmp) -+mnp K, (mnp) — 3K, (mmp)} I (mmd) (4-5-22)
-+ 2mad I, (mnd) K, (mmp),
X, = 7;;77’ [{4K,(mmp) —mmp K, (mmp)} I,(mad) — 2muA 1, (mmd) K, (mmp)],
Y = 2mm{M; (mmd) K, (mmp) + pI,,(mmd) K, (mmp)},
w,+z,, = —2mm{AL,(mmd) K,(mmp) + pI,(mad) K, (mmp)} + (7 —a) L,(mad) K, (mmp),
—_— _ J,(ud) J,(up) usinh®u n r’m? .
gmﬁmp_)+km%j;. o L Lﬂ+ﬂﬂ (ﬁ+r%§J u, (4-5-23)

e 32(—)mirtinhm?n® 0o J (ud) J,(up) sinh®u n r2m? } -

= Y, fo (@ rmn)e s {u2+727r2 (W2 P22 du, (4-5-24)
. ©J,(ud) J,(up) sinh?u [ 2—yp r2m?
", = 32(_)m+'+17km2"3f0 "‘((u2+7§l2’707)2)22 """ - {u2+r2ﬂ2 (u? 1 1%n%) 2} du, (4-5-25)
J,(ud) u*sinh?u (p{J,(up) + S, (up)} r2ﬂ2J’(up)}

my, L \mAT 0222 JAS— W5

u, = 32(—= )" m*m fo (W2 mer)2 s l ul 12 (21272 (4:5-26)
o 832(—)mrramPa? (= T (ud) {J,(up) -upJ;,(up)}sinhz_z{{ n o r2r? }
V= 152 fo S (u2+m21r2)22 u2+r2112 u2+72ﬂ2 2
(4:5:27)
@ J,(ud) J,(up) u* sinh?u

M, = 32(— )il 7m2"3J0 (u25|—m)27r2)(2 82+r2ﬂ2)22d"a (4-5-28)

o 32— )™ rmPa® 1 J,(ud) J,(up) w?sinh®u - -
Xp = p h i.fo (u2+m27r2) (u2 1 r2ﬂ2)22d“ (4 5-29)

© J (ud) J,(up) u*sinh? u

my _\m+7 4252 n n B 5

Y, = 32(—)""'m Jo (u2+m2ﬁ2)2(u2+72ﬂ2)22du’ (4:5-30)
“J,(ud) J,(up) u?sinh®u (| ¢ 72 }

m my _\m+r 2 on n SR S 5

U, +"z, = 32(— )" mtn fo (W? +m?n?)? % \u2+r27r2+(u2+r2712)2 du. (4-5:31)

4-6. At first sight it would appear thatoo®+-4 independent stress systems have been found
which satisfy the boundary conditions (2:1-1); 00% in §4-3 to §4-5, one in §4-1 and three in
§ 4-2. The three independent solutions (4-2-1), (4-24) and (4-2-7) (modified when necessary
so as to satisfy the conditions (2-1-1)) were replaced by two others (4-2-19) and (4:2-35) to
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STRESS SYSTEMS IN ISOTROPIC PLATES 581

(4-2-37). The third independent solution may then be taken to be (4-2-1) after a suitable
function has been added in order to make the normal and shear stresses zero when { = 4 1.
Restricting the argument to the cases n>>2, for convenience, it is found by the methods of
the previous sections that the complete function § which is required, so that the boundary
conditions (2-1-1) are satisfied, is

(p=1=>),
(4-6-1)

NG 1 | 4nh*A"sinnf [ J, (ud") J,(up) cosh ul
— g2)n-2)2 T . n
V=ad ,o”—| 2(n—1) p*~ zjsm nl A'm fo u?sinh u du

the displacements and stresses then being given by (3-2-2) and (3-2-3). If cosh «{is expanded
in a Fourier series by (4-2-49) and if the series is integrated term by term (which is possible),
¥ takes the form

R £2—+--~v~~-wl—m—---2} sin nf
pro2(n—1)p""
anh?Arsinnf [ (°J,(ud) T (up) , . % J,(ud") J,(up) "
T lfo g dut2 =Zl (— w(ar ) duj. (46-2)

The integrals in (4-6-2) may be evaluated with the help of (4-2:31) and (4:4-4) and the
result (Watson 1944, p. 401) {

RACORAC) . A A 6
L e (T i (= LR )Y (4-6:3)
Then, in addition, using the expansion
¢=3te3 (rgosmt (<<, (4-6-4)

(4-6-2) becomes

(2n+24-31"%) A2

g — (& 8nh*A"sinnf 2 (— )" 1, (rmd") K, (rmp)
6(n+1) p*

in nf 4 ) TR 2 ‘cosrnl.  (4:6-5)

The first term in (4-6-5) gives a stress system of the type called ‘plane stress (@)’ in §4-1,
while the remaining terms are a linear combination of potential functions of the type
(4-3-2). This solution is therefore not independent and may be omitted. The solutions are
then reduced to the co3 solutions in § 4-3 to § 4-5, the solution given by (4-2-35) to (4-2-37),
and the two plane stress solutions (a) and () given by (4-1-2) and (4-2-19). It can be shown
that a linear relation exists between these 00®4-3 solutions thus reducing the independent
solutions to co®+-2 altogether as required. In order to obtain this linear relation consider
the combination of potential functions

%Qj__aﬂf% + % (_

’ ’ n m
P 3 () (bt b~ Ot St ) i) (460

and the corresponding displacements when expressed as Fourier series in {, again restricting
attention to the cases n>>2 for convenience. Then using the formula

us 4 >

3 S o E
< (@4 m??)? " sinh%w’

(4:6:7)

llMS
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582 A. E. GREEN ON THREE-DIMENSIONAL

which can be derived from (4-2-49) and (4-2-50), and assuming that orders of summations,
and orders of integration and summations may be changed, it is found that the displacements
may be written in the form

u, —I—n—-l /1" " o f L (ud) J’ up
hcosnd — 4nn(n
® [n2+p2r2ﬂ2 / / 2(1—7) '
23 (LS om) K, (rmp) 4 AL o) Kirng) 20 1) K rmp)
r=1 .

722
+r2m T (W4 rn?

+2f (wh) T (up) { )2}du}(_)rcosm§, (4-6:8)

g  n—l—a A anf (4) (4 )

hsinnf 47772(”_ l) pn—l o _-?T_-,ﬁ_

+ 2r§ {2%;7;;)—72 L,(rnd) K, (rmp) — ;01;71 [AL,(rmd) K, (rmp) + pL,(rmd) K, (rmp)]

2n (' J,(ud) J,(up) | 7 P22 N
2r u \24-r2m2 (w2 +r2m2)? }d”}( ) cosrnl, (4:6:9)
W, %201 . ' |
i = mzrgl{ ) 1 (rmd) K, (rmp) + AL (rmd) K, (rmp) -+ pI,(rm) K (rmp)
= J,(ud) J,(up) [ 2—1 r2m? iy B
+2r7rf0 - ” {u2+rzﬂz“(u2+72ﬂ2)2} du}(—) sinrnf. (4:6-10)

With the help of (4:2:31), (4-4-4), (4:5-4), (4-6-4) and the formulae

gzgélﬁf.)'if_“% (—1<t<1), (4-6-11)

| fo (ﬁ%jﬁ’(ﬁ‘ﬁ)d — Sn((zjgf;:*ﬁs(nﬂ;p"“ (p=An>1),  (4612)

- f : {%%%27(3@ du — — %ﬁ%m L (mm) K.\(mmp)  (p=)), (4-6-13)
it (zfé‘fﬁ,;f;é‘)’;) sy =2, () K om)

P VK (mmp) (pA),  (4614)

+/1m711,;(m7r/1) K, (mmp) +-—-

pm
the expressions (4:6-8) to (4:6-10) may be reduced to

u, _(1~77)/1n{477n§2_ 7n~|—2—~o¢(n-—2)} { n _77}/111_%3
hcosnf 8nn pn+1 2(n——l)p"‘1 4(n+ 1) 612 pn+1,

ug  (L—ny) A" (4pnl> 7n—16~—an}+: " _1_”}/1%2 (4616)
hsinnd sznm{p"“ 2n—1)p Y T d(n 1) 612 | pT )

(4-6-15)

u, (A=) 6
heosnf ~ mpr 4 (4:6:17)
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STRESS SYSTEMS IN ISOTROPIC PLATES 583

On referring to (4-1-4) and (4-2-20) it is seen that these displacements can be obtained from
alinear combination of the plane stress solutions (¢) and (4). Thus the linear relation between
the 003+ 3 solutions is given by

(Yotwgt+dy) 1-—7 U 1—no,
807)771 " 8 (40,40, +¢,) ‘1"{4(72_,_1)” 612 ;72'

o)

3 ()40, — O+ B k) ) = 0. (4:618)

m=1

A A

5. EVALUATION OF THE INTEGRALS

5-1. Before applying the above stress systems to a particular problem it is necessary to
examine the integrals which appear in a rather involved way in the expressions for the
displacements and stresses since it is desirable that their values should be known with some
degree of accuracy. Attention will be confined to values of the displacements and stresses
at the cylindrical hole, i.e. for p = A, and for this value of p the integrals can all be expressed
in the form

SOCIETY

w='J, (ud) J,(ud) sinh®u .
2J0 g (5-1°1)

OF

where m, u, v, n are all integers. These integrals could be expressed in series form by integra-
tion round a suitable contour but owing to the presence of the factor ¥ in the denominator
this is not a suitable form for numerical work. Instead, the factor X~1sinh?« may be written

in the form ,
sinh?z 1—X
Z e 5 (5.1.2)

where X = (142u—e2)/Z, (5-1-3)
and the integral (5-1-1) may then be split up into two integrals

f‘”um“lJﬂ (ud) J,(ud)
0 (uZ_{_kZ)rﬁl

Xym-1J (u/I)J(u/I)
and fo e (u2+k2)”“ S

du, (5'1-4)

A A

du. (5°15)

Consider first the integral (5:1+4). When v —u<m < 2n+ 3 and s +v-+mis even the integral
can be evaluated quite simply in terms of /,(A%), K, (Ak) (Watson 1944, p. 429) but the cases
required here are those for which g+4v+m is odd when no simple results appear to be
available. The general integral (5-1-4) is, however, mentioned by Watson (1944, p. 436)
and two methods are suggested for its evaluation. It appears to be of sufficient interest to
outline both methods here.

SOCIETY

OF

5'2. In the first method the product J,(ud) J,(ud) in the integrand of (5-1-4) is replaced
by Neumann’s integral (Watson 1944, p. 150) -

J, (@A) J,(ud) = f ev(2ud cos ) cos (u—v) 0df. (5-2:1)
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584 A. E. GREEN ON THREE-DIMENSIONAL

Then, changing the order of integration (which can be justified under certain conditions)
and evaluating the infinite integral by using a formula given by Watson (1944, p. 434), it
is found that

f cun S, (ud) J,(d) .
0

(w2 + K21
Y (Acos @)ty ptvim=2n=2 NGy Jv -+ gm) U'(n 41— fu— v —4m)
_ﬂfo cos ( V)ﬁ{ D(n+1) D(u+v+1)

><IFZ(#+')2+m;ﬂ+;+m*n,,u+v+1;szlzcos‘%’)

+(/1c050)2”+2“”’ Niu+dv+im—n—1)
P(utdv+n+2—im)

+V + +o, _giv+m

v F (n+1 ~ Fne; k2/1200320)}d0, (5-2-2)

where I'is the Gamma function and ,F, is one of the generalized hypergeometric functions

defined by e 7(051)r (@), - (“p)r Zr}
) bl

[)qu(alﬂ a2’ .“’o‘l’; p'l,pz’ ”.,pq; Z) . rgﬂr!i(pl)r(pﬁr . (pq r

a, = a(e+1) (a+2) ... (a+r—1), (a)y=1.

(5:2:3)

If term-by-term integration (which is possible in certain cases) is carried out in (5-2-2)
by using the result

m'(p+q—1)
20+a=11(p) I'(q)

the final value of the integral (5-1-4) can, after some reduction, be expressed in the form

f w1 J, (ud) J,(ud)

Fﬂcosl”"l‘%’cos([)-«q)ﬁdﬁ = (p+q>1), (5-2+4)
0

(&EW?M du

M+Vkﬂ+v+mﬂnﬂ[‘(fi"—ﬁ’;L m) I‘(n +1 ._',‘_‘,ffﬂfif_’?) F(tf‘ +r+ 1) I‘('u try 1)

2 2
omD(n+1) T(u+1) T(w+1) D(g+v+1)

x By (R Y e T 1, o, o, R g i
AZn-FZ—mI‘(_:’ZL,}_n)I‘(n+2__)1’1(ﬂ+1;+m n-l)
+ o ' Y
271%1—‘(n+2+'u+v )P(n 5 ZL)P(”—(—Q-F” 't; @)
H+v—m

V—
2+

><3F4(n+1 +n, n+2— 2,n+2+ 3

R Ji'ff’" A2k2) (5-2:5)

Although this result is true for certain complex values of A, k, u, v, m, n attention is confined
here to real values of these quantities and in this case they are restricted by the inequalities

p+v+m=>0, 2n+43>m. (5-2-6)
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STRESS SYSTEMS IN ISOTROPIC PLATES 585

The two series ;F, are convergent for all values of £ but they are only suitable for numerical
computation if A% is not too large. Discussion of the evaluation of the integral for large values
of Ak is postponed until after the second method of obtaining the result (5-2-5) is shown in
the next section.

Before proceeding to the next section a special case of (5:2-5) should be noted. When
n = —1 the formula reduces considerably. The result for this case can also be found from

Watson (1944, p. 403) and is
f w1, (ud) Jj(ud) du
0
2m—1p(£‘:’;'_’i_m) T(1—m)
,u+v+m>0)

/I"lI‘(1+ﬂ+VZ )F(1+1‘_1’Li_”})p(1+t_%f_@) (1>m

(5-2-7)

5-3. In the second method the product J,(ud) J,(ud) is replaced by the contour integral
(Watson 1944, p. 436) '

hl_f‘”‘”iw P(—s) D(utv+2541) (FAu)rtvrzs s . (5-31)
2m) i '(+s+1) T(v+s4+1) D(p+v+s+1) ’
in which 'ajH;rﬁ> >0, /i%il>c>/f--‘lr-%im—n——l,

so that the poles of I'(—s) are on the right of the contour and those of I'(¢+v+25+1) are
on the left. The order of integrations is then changed (which is possible for the cases con-
sidered here) and, making use of the result

F(’{{tzj_ m +S) I‘(n +1 _/_‘j__';_le ) kutvim+2s—2n—2

© u/1,+v+m+25—1 p 2
f o (kT 2 (n+1) ’

the integral (5-1-4) takes the form

f‘”u”‘“.]” (ud) J,(ud)
0 (u2+k2)rz+l

(5:3-2)

du

. J‘—c+wi F(—S) F(ﬂ"JFV‘f‘ 2S+ 1) ]"(/u_—%‘lim s )P(n+ 1 ﬂ—i—%ﬂ:m ) (_%_/1)/1,+v+25k,u+v+m+2$—-2n—2
T4l o , Ln+1)D(p+s+ 1) Tw+s+1) T(u+v+s+1) ds.

(5-3-3)

It may be shown from the asymptotic expansions of the Gamma function that the integrand
of the contour integral in (5:3-3), when integrated round a semicircle of radius R with
centre at (—¢, 0), on the right of the contour, tends to zero as R o0 provided that R tends
to infinity in such a manner that the semicircle never passes through any of the poles of
the integrand. The integral may therefore be evaluated as the sum of the residues of

I(—s) T(e+v+25+1) F(ﬂ+v+m+s) I‘(n+ 1 __/H";"'”?_s) (LA)wHv+2s futvems+2s-20-2
2l(n+ 1) p+s+1) P(v+s+1) D(u+v+s+1)

(5-3-4)

Vor. 240. A. 72
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586 A. E. GREEN ON THREE-DIMENSIONAL
at the poles s=1r, s=n+1 ﬁ’uJ'—l;rn;hH, (5-3-5)

where r takes all positive integral values including zero. Hence, remembering that the
residue of I'(—z) at the pole z = ris (—)7*1/r, the final result (5-2-5) is obtained once more,
after some algebraic simplification.

5-4. As stated above, the result (5-2-5) is only convenient for numerical computation
when A% is not too large, and since large as well as small values of Ak occur in the applications
it is necessary to see if an asymptotic expansion for the integral can be found. For this
purpose a method due to Barnes (cf. Watson 1944, pp. 220, 351) can be used which employs
a contour integral of the form (5-3-3). The cases which are required below are those for
which m = 1 and g+ is an even integer, and m = 0 with z-+v an odd integer, and it is
convenient to consider these cases separately.

Take first m = 1, 4+v an even integer, # and v both being integers or zero, and consider
the integral ' '

1 JF( “S) I‘2(luil}2il_}_s) ]_"(/'_t_;—_v_*_ 1 +S) F(l:g‘*l)ﬁ—n—-ﬂ‘) ApAv+2s futv+2s=2n-1
Smi STt D T I T 1) T v 179 as, (541)
taken along theline s = —Ju—1v—1—pfrom —ooz tocoi, where p is a large integer such that

the poles of the integrand on the right of the contour are simple poles at the points

) 0,1, 2,
lop—y o lmpmv 0y Loy } (54:2)
9 +n, 5 +n-+1, 9 +n+2,...
and double poles at the points
+r+1 +v--1 +v+41
_Lé__ﬂ, Jf_évw, s _/,t.vzw___ /. (54-3)

The integral (5-4-1) is O(A~272¢ f~2#=3-20) and, by a similar argument to that used in § 5-3,
it follows that the integral is equal to the sum of the residues of

F( —S> 12 (/,‘iﬂj“_l.}_s) [‘(/f_étf+ 1 +S) F(Eig;;]{ +n —J) Aty +2s fptv+2s—2n-1
N 2 D(n+1) T(u+1+5) T+ 1+45) D(p+v+1-+s)

» (54-4)

at the poles (5-4-2) and (5-4-3). Thus, evaluating the residues with the help of the result
that, when z is small and r is an integer or zero,

P(—rt+2) = U 0z, | (5-4-5)

where ¥ (z) = 21% log I'(z+1), | (54-6)
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STRESS SYSTEMS IN ISOTROPIC PLATES 587

and remembering the formula (5-2-5), the following asymptotic expansion is found, after
some algebraic reduction:

5 A e o AL
[, coitonral 2 )\ g U2 e )
o @Ry M g % ), (P R

x{log (W)2-+20 (1) +(r— ) —(r-+1) —p (5] |
e =) N

This expansion is valid for real values of g, v, A, &, n such that x4 and v are integers and y+v
is an even positive integer, and 71 >0, although, if needed, it can be extended to certain
complex values of A, £, n.

5-5. In this section an asymptotic expansion of the integral (5-1-4) is found for large
values of A%, for the case m = 0 and g+v equal to an odd integer, where x and v are both
integers or zero, by considering the integral '

. JP(_S) P(ﬁ_‘%ﬂ—i—.f) I‘(Iu‘l_V_l_ 1 i ) P(Iu—_!_—"f-.f) F(n—i— 1 __lu_;g_lf___s) /LI/,‘HI‘FZS k,u+v+2s—-2n-»2
om 2t D(n+1) D(p+1+s) v+ 1+4s) D(u+v+1+5) ds,
(5'5:1)
taken along the line s = —}u—4v—%—p from —oo¢ to 0oz, where p is a large integer such
that the poles of the integrand on the right of the contour are the simple poles
0,1, 2,
. 5-5.2
nl HIY g AV g KV in—",} (5:5:2)
2 2
and double poles at the points
B LT U _”ﬂ — 5-5-
2 ) ) 3 eee l7 (O 5 3)

The remaining steps are now similar to those used in § 5-4, so that finally

osind(u—v)m  (2—1?) (n+1)

= J,(ud) J,(ud)
fo w(u? + k2)nil du~ n(2—v2) k22 Am2k o sin L (u—v)
) (e
5 N eV a—

< {log ()?-+ (1) +¢(7+%>+¢(r+1)-~¢(r+n+l)—¢(”j—"+)

—yf(”—;—vntr)—;#(g—;ﬁwtr)——w(r—/%l)}, (5:5-4)

provided g and v are integers, #+v is an odd positive integer and 2n+ 3> 0.
72-2


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \

A
/4 \\ \
A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

588 A. E. GREEN ON THREE-DIMENSIONAL
5:6. In the tension problem which is discussed below the integrals of the type (5-1-4)

which are required can be reduced to eight integrals

Lok = [T a0 = [P a w0123, o)

where £ has the values 77, r being a positive integer. These integrals can be expressed as
convergent power series in 477 by using the formula (5-2-5), and they reduce to the following
expressions:

41 r3md
Lidrm = 8 p 1,15 - p s ) + T g8, 55 ), (5-62)
3213 ; 3rm2*
L2</1: rﬂ) - 3‘]?7; 2F3<23 23 ‘%) 2%) 4%’ 727’2/12) W"é‘géﬁ 2F3<2%3 27‘12) 1%3 3,5; 7‘27T2/12), (506'3)
5120° 1181 ml. 22y SA 1 91.1 . 27212
Ly(A,rm) = — 1 oF3(3, 35 13, 33, 535 rPmd )+ 004, 2F(28, 285 3,55 °n%0%), (5:64)
212&7 1 1 1 22212 /14 1 1 1 o 322212
Ly, rm) = " 99(105)2 72 oF5(4, 45 28, 43, 645 7°m°0%) + Sy 5o Fa(28, 235 — 4,3, 55 A%,
(5:6+5)
rm?A? 2 2y2) . L6 1 91. ,2,212
My, ) = =TT B2 3,45 701002) 1 |0 oFy(1,25 3,23, 38 r2td), (5:66)
/13 1 1.1 2212 256/14 1 1 1 2212
My(A, 1) = o oF5(18, 255 3, 3, 45 1°m7A )= 1575,2E3(2 35 15, 3%, 4y 7 )> (5:6:7)
2 2)2 21 ‘ L 41 5l.,272)2
M. (/1 7'77) 256ﬂ2r32F3(12,2 2, 3 4 rm /1 ) 9(‘]?6‘5)‘2;7 2F3(d,4:; 2@, 42, Qg5 T A ),
13 o168 (5:6:8)
M0, ) = s (10, 285 — 1 3,5 Pn202) — L, (4,55 31, 5%, 6 ),
(5:6:9)

Numerical work is restricted to the values A =1 and r = 1,2, 3,4,5,6. When A =1 and
r = 1, the series in (5:6-2) to (5-6:9) have been evaluated to ten significant figures, about
fifteen terms of each series being required for this accuracy. The integrals can then only be
found to seven significant figures (with the seventh figure doubtful) since each integral
consists of the difference of two terms whose first three figures are usually the same. Values
of the integrals are recorded in tables 1 and 2.

When A = 1 and 7 = 2, 3, 4, 5, 6, the above method of computation is impossibly laborious
and also not very accurate since the integrals are expressed as the difference of two nearly
equal quantities. It is, however, possible to make use of the asymptotic expansions (5-4:7)
and (5-5-4), which for the integrals (5.6.1) become

L, (A,rm)~ omA(rm >2n+2 Z (=12 (;'ig((;?>gin+!)m{log (rm)?+2¢ (m)

—!ﬁ(m*%)-%(m*%)-~-¢(m+1%)‘-¢(7n+n)} (n=0), (5:6-10)

]‘In+ 1 (/1 7’7T> N 377_(7.7% 2n+—é - 4ﬂ:?:1(27z;>1221+4 mio ( - §77>2’:1(§;’12—2|T1(>2'§(>/1n;’7(r?2—: 2>m {10g (T?T) 2 -+ lﬁ(m)

+Y(m41) =y (m—1%) —f(m—§) — Y (m+1%) —¢(m+nr1)} (n=0). (5:6-11)
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STRESS SYSTEMS IN ISOTROPIC PLATES
When using these results the following values of the ¥ function are needed, namely:
¥(0) = —y = —0-5772156649,

Y(—4) =—r—2log2,
1 (5:6:12)

The asymptotic formulae (5:6:10) and (5-6-11) have been used to evaluate the integrals
(5-6-1) for the cases A = 1, r = 2, 3,4, 5, 6. It is not possible to give a precise estimate of the
accuracy of these formulae. For the larger values of 7 it is easy to obtain accuracy to seven
significant figures. The accuracy is much less certain for r = 3 and » = 2 and 3, and for r = 2
and all the relevant values of n. Numerical results are given in tables 1 and 2. Seven figures
are given for >3 but the seventh figure, and sometimes the sixth may be unreliable, par-
ticularly for n = 2 and 3. When r = 2 the fifth figure, and possibly the fourth when n = 2
and 3, may be unreliable.

' TasrLE 1. VALUEs oF L, (1, rm)

\J
n\ 1 2 3 4 5 6
0 3:300107 x 10-2 1:42075 x 102 7-864947 x 10-3  5-030688 x 103 3-516991 x 10-3 2:609720 x 103
1 1:691895 x 103 2:4977 x10~*  6:726895x 10-°  2:523094 x 10> 1-156626 x 10-3 6-057183 x 106
2 1010047 x 10~*  4-9054 x10-6¢  6-340276x 10-7  1-382816 x 107 4-132380 x 10-8 1-520712 x 108
3 6-:49220 x10-6  1-0055 x10=7 6-19692 x10—° 7-833330 x 10-10  1-522491 x 10-10  3-930249 x 10~1!
TABLE 2. VALUEs oF M, (1, rm)
N\
n\ 1 2 3 4 5 6
0 1-483365 x 102 4-7253 x 103 2:234914 x 10-3  1-289402 x 103 8:359726 x 10— 5-849453 x 10—
1 1-104986 x 10-3  1-0736 x 10~*  2-377794 x 10-5  7-882577 x 10—6 3-306650 x 10-° 1-617062 x 10-6
2 8:538238 x 105 2:4619x 10-¢  2-541604 x 10-7  4-832645 x 108 1-310444 x 108 4-476492 x 10-°
3 6:793096 x 10-6  5-6794 x 10-8  2:724623 x 10—  2-968129 x 10-10  5-199728 x 10-11  1-240321 x 10-1!

The special cases of (5:2:7) which are required are

©J3ud) , 44 ©J3wd) 4, 3200
fo =g Jo N 5613
fo. u - 3m ), u? e

5-7. A partial check on the numerical results in tables 1 and 2 may be obtained by using
some relations which are found to exist among integrals of the types (5:6-1). Consider the
slightly more general integrals

© J2(ud) »J2_ (ud)
= AT — il S VA
L, (1, A, k) —fo (u2+k2)ndu, N, (1, A, k) fo (W2 + k%) du, (571)
o J (ul) J,_;(ud)
= | TN Tem 1V
M, (4, A, k) = Jo u(u? k) du,
where x> 1. By integration by parts and by using the relations
Aud!(wd) = dud,_(ud) —pd (ud),
/4( ) 12 1( ) H /4( ) 1 (5.72)

AT, (wd) = (p—1) T, (ud) — A, (ud),]
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A. E. GREEN ON THREE-DIMENSIONAL
the following formulae may be obtained:

2nk?L,,, = (2n+2u—1) L,—2A(M,_,—k*M,),

590

2nk?N,,, = (2n—2u+1) N,+204(M,_, — k*M,), (5:7-3)
AN, = AL, +M,+2n(M,—k*M, ).
The elimination of N then gives
2nk2L, | = (2n+2u—1) L,+2A(kR°M,—M,_,), \'
an(n-+1) k*M,, , = 4n(2n+2—pu) k2M, ., — (2n+1) (2n—2u+1) M, (57-4)

+dnk2AL,,, —4nAL,,

;

for =1, n>1. Relations between the integrals (5-6-1) are obtained by putting x = 2.
From these formulae the values of L,, L,, L,, M;, M, can be found in terms of L,, M, and M,.
This has been done for the integrals whose values are recorded in tables 1 and 2 and good
agreement was obtained with the values given in the table which were found by direct
calculation.

5-8. Integrals of the type (5-1-5) which are required can be reduced to the eight integrals

© XJZ(ud © XJ,(ud) Jy(ud
Spaob) =[] e, Tt = [

where £ has the values rm, 7 being a positive integer. No explicit expression has been found
for these integrals owing to the presence of the factor X in the integrand. The integrand,
however, contains negative exponential terms when the variable « is large so that evaluation
of the integrals can be effected by numerical integration. This has been done for the case
A = 1 and the results are recorded in tables 3 and 4.

du (n=0,1,2,3), (581)

TABLE 3. VALUES oF S, (1, rm)

1 2 3 4 5 6
2-4967 x 10-3 7-9998 x 10—+ 37712 x 104 2-1689 x 10— 1-4028 x 10— 9-7985 x 10-5
1-8294 x 10— 1-8217 x 10— 40350 x 10-6 1-3336 x 106 55776 x 10~7 2-7211 x 107
1-3816 x 103 4-1656 x 10-7 4-3216 x 10-8 8:2026 x 10~° 2-2180 x 10-° 7-5572 x 10~10
1-0710 x 10-6 9-5622 x 10-° 4-6331 x 10-10 5:0470 x 1011 8-8215 x 10-12 2-0990 x 1012

TaBLE 4. VaLues or T, (1, rm)

1 2 3 4 5 6
3-6622 x 103 1-0530 x 10-3 4-8274 x 10— 2-7465 x 10—+ 1-7672 x 10—* 1-2308 x 10—+
3-1045 x 10— 2-5235 x 103 52952 x 10-6 1-7135 x 10~6 7-0934 x 107 3-4409 x 107
2-6751 x 105 6-0584 x 107 5-8109 x 108 1-0691 x 10-8 2-8475 x 10-° 9-6196 x 1010
2:3378 x 105 1-4571 x 108 6-3795 x 10-10 6-6721 x 10~ 1-1431 x 10-11 2-6894 x 1012

For the § integrals the integrands were tabulated for values of « from 0 to 7-2 at intervals
of 0-2. The values of J,(u) were found to ten figures from J, () and Jy(«) which are given by
Gray, Mathews & MacRobert (1922, p. 267). The values of X were found to ten figures for
u = 0 to 3-6 by using Newman’s tables of the exponential function (1883). For u = 3-8 to
7-2 X was evaluated to seven figures. The § integrals for the cases A =1, and r =1,2,3,4
were then all evaluated by applying Weddle’s Rule (Whittaker & Robinson 1946, p. 151)
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STRESS SYSTEMS IN ISOTROPIC PLATES 591

which is correct to fifth differences, to each sixth of the range. The results were all checked
by applying the Newton-Cotes formula (Whittaker & Robinson 1946, p. 152) to each seventh
of the range u = 0 to 7. There was always agreement in the first five figures. The contributions
to the integrals from the range « = 7-2 to infinity do not affect the first five figures and were
therefore neglected.

The same procedure was adopted for the 7" integrals but for five figure accuracy, or at
most an error of 1 in the fifth figure, it was only necessary to ta.bulate the integrand for
values of u from 0 to 6.

For A = 1 and for large values of  asymptotic formulae for the integrals can be obtained
which reduce the labour of computation. The required formulae are found by expanding
the factor (u2+44£%)~®*D in the integrands in inverse powers of 42 and integrating term by
term. Itis then necessary to know the values of integrals of the form

A) = f : Xu2n J3(ud) du, ™T)(A) = f : X1 J(ul) J, (ud) du, (5-8-2)

form = 0,1,2,3,.... The integrals ™S,(1), ™T;(1) for m = 0,1, 2 and 3 have been evaluated
- by numerical integration using a range of values of # from 0 to 8 at intervals of 0-2, the
contributions from the rest of the range being neglected. Thus
05,(1) = 0-035287, lS( ) = 0-17093,
28,(1) = 1-191, Sp(1) = 11-09,
073 (1) = 0-044028, 7,(1) = 0-10650,
275(1) = 0-4262, 375(1) = 2-296.

(5-v8-3)

Using these values it is found that the first four terms in the asymptotic expansions of
the integrals (5-8-1) for large values of £ are

© XJ3(u) 0-035287 (. 4:8442n  16-88n(n-+1) 52-40n(n+1) (n-2)
fo (u2+k2)"du~ k* {1_ o K B kb +} (5-8-4)
and
J“”XJQ(u)Jl(u) a,uN0-044028{1__2-4188n_+_4-8403n(n+1)_8-690n(n+1)(n+2) ‘

o u(u2+k2)n k2 k2 k4 - k6 _I""'}'

(5-8-5)

As a check on these asymptotic formulae the integrals (5-8:1) were re-evaluated for the
case A = 1, k = 4m. The results agreed, or at most differed by 1 in the fifth figure, with those
found previously, except for the integrals S5(1, 47) and S,(1, 47) ; but even in these integrals
the results only differed by about 7 and 10 respectively in the fifth figure. It appears, there-
fore, that the asymptotic formulae (5-8-4) and (5-8-5) may safely be used for the values
= 5mand 67 (and greater values). Results found in this way are included in tables 3 and 4.

6. THE TENSION PROBLEM

6-1. Attention is now directed to a particular problem in which a plate containing a
circular cylindrical hole, free from applied stress, is acted on by a uniform tension 7" at large
distances from the hole. If the hole is absent the only non-zero component of stress is %%
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592 A. E. GREEN ON THREE-DIMENSIONAL

which is equal to 7, corresponding to a uniform tension parallel to the x-axis. In cylindrical
polar co-ordinates the stresses are

77 = LT(1+cos2), 10 —=—%Tsin20, 06 = LT(1—cos20). (6:1-1)

These stresses satisfy the boundary conditions (2:1-1) on the faces of the plate but they do
not give zero values for the normal and shear stresses when p = A. The constant part of the
normal stress 77, namely 17, may be removed at the hole p = A by adding a stress function
w of type B, in the form

Ta?
w = ' log p, (6-1-2)

. . . T~ T2
with corresponding stresses = — 27 00 = 957 (6:1-3)
the remaining components of stress being zero. Thus, the parts of the stresses which are
independent of the angular co-ordinate ¢ are

7 — §T(1—A2p2), 08 — §T(1+%/p?), (B

the remaining components of stress being zero. In particular, at the hole p = A, §6 = T.

To complete the solution it is now necessary to find a system of stresses which have zero
values at infinity and zero values for the normal and shear stresses on the faces of the plate,
and which, with the stresses

7t = 1Tcos20, 1= —3Tsin20, 06— —4T cos?20, (6:1-5)

have zero values for the normal and shear stresses at the hole. To do this the stresses which
are derived from the following potential functions are added to those given in (6-1-5), namely:

T G Kt ) K (490,44,

12 ’ ’
- 2,“ ZI{AM wm + Bm(wm + ¢m) + Dm{4 (O)m + ¢m) - (wm - ¢m -+ Xm) }} ) (6 1 6)

m=

where throughout 7 takes the value 2 and where 4,,, B,,, D,,, k, k" are constants which are
to be determined from the boundary conditions at the hole, the conditions at the faces of
the plate being already satisfied by the stresses which correspond to (6:1:6). One more
constant than is necessary for the satisfaction of the boundary conditions at-the hole is
included in (6-1-6) for a reason which will appear later. It is found to be more convenient
to take 4(w,,+¢,,) — (0, -+, +x,,) instead of w), 4@, 4 x,, as a set of fundamental potential
functions. .

If the values of 77, 70 and 72 which correspond to (6:1+6) are obtained in the form of
Fourier series in {, cosine series for 77 and 70 and a sine series for 72, then the condition that
these stresses, when added to those given in (6:1-5), should be zero when p = A can be satis-
fied by equating to zero each coeflicient of cosrn{ and sinra{. The required Fourier series
are found from (4-1-4), (4-2:21), (4-2-54), (4-3-3), (4-4-19) and (4-5-20), where in (4-2-21)

m3
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STRESS SYSTEMS IN ISOTROPIC PLATES 593

{? is expanded with the help of (4-6-4). Thus, assuming that the order of summations may
be changed, the following set of equations is found for the constants:

Ayt (30— 8) KBy~ 8(1-+ 7+ 7A2) KBy 14T
1 «
‘}""2‘ gl {"ay By, + (4 may—"u,y) D,} = 0,
" , (6:1-7)
Ay (30— ) KBy —4(1 7+ 209 KBy 4T

l o0
+§ 21 {"by B, + (4mby—mvy) D,,} = 0,

and {oa,k _ %fi} Bytg, A4, +d.B,+ (4a.—u) D,
+ % {mar Bm + (4 mar_mur) Dm} = 0’
m=1
—rk , v
{obrk—— %—ZZS;TZA)T} Byt hyA,+b.B,+ (45" —o) D,

" S (6-1-8)
+ 3 0, B, 4 (478,—m) Dy =0,
1

rm
m=

%,kBy+1,4,+c,B,+ (4c,—w,) D,

+ § {mchnz+ (4 mcr_nlwr) Dm} =0,
1

m=

for all integral values of . The constants 4, may easily be eliminated from (6:1-8) so that
the equations for B, and D, become

(o= 21K 1 (o, 20K ) g, ’

r2m2)? r2m2)?

+ (a;/l,—b:g,) Br +{(4a;—u;) hr_ (4b;—1);) gr} Dr

+ Z {(marhr—mbr«gr) Bm+{(4 mar_mur) hr— (4mbr_mvr) gr}Dm} = O’
r=1

{(Obrk — gﬁ’lg__lﬁ’) i, — Ocrk/l,] B,

r22)2 |

+(byt,—c k) B,+-{(4b,—v) i, — (4c,—w,) b} D,

L (6:1-9)

+ % {(mbrir—mcrhr) Bm+{(4mbr_mvr) ir_" (4’ mcr'_mwr) hr}Dm} = 0.
r=1

6-2. Numerical calculations are inevitably extremely heavy owing to the complicated
nature of the functions which are used, so attention has had to be confined to an example
which is likely to be one of particular interest. When the plate is infinitely thick (1—0) the
problem becomes one of plane strain and the solution is well known. Again, when the plate
is very thin (1—00) the problem is one of plane stress with a solution similar in form to that
of plane strain. In both of these cases the maximum stress concentration at the hole is 37
at the ends of a diameter perpendicular to the applied tension. The generalized plane stress
theory gives a maximum value of 37 for the average stress concentration at the hole and this
result is usually supposed to be valid for moderately thick plates. It would appear therefore

Vor. 240. A. 73
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594 A. E. GREEN ON THREE-DIMENSIONAL

that an example of some interest is that which lies about mid-way between the extreme cases
A—0, =00, so calculations have been carried out for A = 1, i.e. when the diameter of the
hole is equal to the thickness of the plate. The value 7 = 0-25 has been chosen for Poisson’s
ratio.

Some of the constants in (6:1+7) and (6:1+9) depend on the integrals which were evaluated
in § 5:6 to § 5:8 and whose values are given in tables 1 to 4. The remaining constants depend
on the Bessel functions 7,(rmd), K,(rmA) which can be expressed in terms of I,(rmd), I,(rmd);
K, (rnd), K (rnd). Values of ¢ *(x), e7*I,(x), ¢*K,(x), ¢*K,(x) are recorded in Watson (1944,
p. 698) for x = 0 to 16 at intervals of 0-2 and these are suitable for interpolation and have
been used to obtain results for r = 1,2,3,4,5, A = 1. Since only products of the / and K
functions are required the exponential factor need not be evaluated. When r = 6 values of
I,(6m) and K,(6m) were found from the asymptotic expansions for these functions. For
reference the values of I (rmd), I,(rmd), L,(rad), K,(rmd), K, (rmd), K,(rmd) for A =1,
r=1,2,3,4,5,6 are given in table 5.

TABLE 5

r el (rm) el (rm) el (rm) &K (rm) K, (rm) K, (rm)
1 0-2367192 0-1940935 0-1131554 0-6828514 07847820 1-182459

2 0-1626701 0-1490947 0-1152118 0-4908233 0-5285282 0-6590591
3 0-1317896 ©0-1245885 0-1053511 0-4031260 0-4239971 0-4931010
4 0-1137138 0-1090910 0:09635143 0-3501822 0-3638581 0-4080920
b5 0-1014902 0-0982047 0-0889864 0-3137959 0:3236347 0-3550024
6 — 0-0900283 0-0829645 — 0-2943270 0-3180441

From equations (6-1-9) the constants B,,, ), may be found in terms of kB, £'B, and if
these values are substituted in (6-1-7) two equations result for the three constants 4., kB,
and £'B,. It must be remembered, however, that the identity (4-6-18) exists between some
of the fundamental stress functions which are contained in (6-1-6) so that one of these three
constants may be chosen at will. If £" is zero a preliminary calculation indicates that the
values of D, tend to constant multiples of £B,, as m increases, while the values of B,, tend to
zero. This form of solution is inconvenient as it makes the subsequent calculation of stresses
very lengthy. The constant part of each D), can be removed with the help of (4-6-18) so that
the remaining part tends to zero as m increases. Unfortunately it is not easy to determine the
constant part of D, very accurately without including a large number of values of m in
equations (6-1-9). An equivalent method is to choose the ratio of £ and £" in (6-1-9) so that
when the equations are solved for B, and D, all these constants continually decrease as
mincreases. There is evidently one ratio of £ : £ which will achieve this result but no analytical
method for finding this ratio has been discovered. It has therefore been necessary to proceed
by trial and error until a reasonably satisfactory falling off in the values of D,, were found
although it is not possible to say explicitly that the values found tend to zero with m since
they may tend to a numerically small constant.

The final values chosen for ¥ and " were £ = 1, £ = 0-5 and equations (6-1-9) were solved
by successive approximations. The first approximation was found by ignoring all coefficients
B,, D, for m>2and solving (6-1-9), whenr = 1, for B, D,. Using these values the equations,
when 7 — 2, were then solved for B,, D, ignoring B,,, D, for m=3. Then, when r = 3, B,, D,
were found by ignoring B,, D, for m>4 and using the values already found for B, B,,
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D,, D,. This process was repeated until By, D were obtained. A second approximation was
then found by returning to the equations (6-1-9) for r = 1 and solving for B,, D, using the
first approximation values for B,, D,, ..., Bs, D; and ignoring the rest. Then when r = 2,
B,, D, were found by using the value just obtained for B,, D, and the first approximation
values for B;, Dy, ..., Bg, Dy, ignoring the remaining constants. Similarly, second approxi-
mations were found for B,, D, ..., Bg, Dg. Third and higher approximations can be found,
by a similar process, the final values of the constants then being found by summing the
separate approximations. This iterative process was found to converge quite rapidly so
that it was unnecessary to proceed beyond the third approximation.

Values of B,, D, form = 1,2, ..., 6, together with the values of 4,, which were obtained
from (6-1-8), are given in table 6. These values of B,,, D, were then substituted in (6-1-7) and
the equations were solved for 4, and B,. The values found were

Ay =1-69643T, B, — 0-1588337T.

6-3. Chief interest lies in the value of the circumferential stress 64 at the edge of the hole
p = A. This has been found by evaluating 77+ 60 at the hole by using the formulae which
correspond to the stress function (6-1:6) and the values of the constants B,, D, given in
table 6. Then, remembering that 77 is zero at the hole the value of 66 was found to be
%—2 = 14{—2-0276 —0-1047 cos 7{+ 0-0496 cos 2n{ — 0-0271 cos 3n{
+0-0168 cos 4m{ —0-0113 cos 5n{+ 0-0081 cos 6m{}cos2f (A =1). (6:3-1)

It should be recalled that Poisson’s ratio # has been taken to be 0-25.

TABLE 6

r B, D, A,

1 1-1943 0-77378 0:44974
2 —0-77132 —0:35831 —0-083340
3 0-46185 0-19451 0-027944
4 —0-29674 —0-11787 —0-012406
5 0:20395 0-07801 0-:006519
6 —(0-14817 — 005583 —0-003834

Itis difficult to give any precise information about the degree of accuracy of the coefficients
in this Fourier expansion but it may be observed that when equations (6-1-9) were solved
for the coefficients B,, D, ..., B;, D;, all the remaining coefficients being zero, the value
found for 06 agreed with the first six terms in the bracket in (6:3-1) or at most differed by
one in the fourth decimal place. To be sure of three significant figures for the values of
06 it would be necessary to have more terms in the Fourier expansion but the considerable
extra numerical work which would be required does not appear to be worth while, and it is
only when all the terms in the bracket in (6-3-1) have the same sign that the third figure is
likely to be much in error.

The value of zz at the hole may most conveniently be found by evaluating 77 +00+72
and then by using (6-3-1) and the fact that 77 is zero at the hole. This gives

g {—0-1689 —0-1211 cos 1+ 0-0293 cos 2n{ — 0-0105 cos 3n¢

+0-0047 cos 4m{ — 0-0024 cos 5m{ + 0-0014 cos 6m}cos 20 (A =1). (6-3-2)
73-2

NI
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Some check on the accuracy of the work is provided by the fact that at the surfaces of the
plate { = + 1 the stress zz should vanish. The formula (6-3-2) for zz gives only a very small
residual stress 000057 cos 20 when { = +1. :

6-4. From (6-3-1) it is seen that the average value 00 of 0 at a hole whose diameter is
equal to the thickness of the plate changes from a compression 1-028 7T at 6 = 0° to a fension
3-:028 T"at = 90°. The corresponding average values according to the theory of generalized
plane stress are 1 and 3 respectively so that the approximate theory gives a good estimate
of the average values of the circumferential stress at the hole in this case. The average value
7z of zz at the hole changes from a compression 01697 at 6 = 0° to a fension 0-169 T at § = 90°
so that the neglection of 2z compared with ¢ at the same points would hardly seem to be
justified, especially at § =

The variation in 00 at 6 = 0° and 90° across the thickness of the plate, calculated from
(6-3-1), is shown in table 7. Across the middle sections of the plate at § = 90° there is very
little variation in the stress; there is rather more variation near the faces of the plate. The
maximum stress is about 3:107, i.e. just over 3 %, in excess of the usually adopted value of
3T, but to the order of accuracy given here it is not possible to say precisely. whether the
maximum occurs at the middle plane of the plate or at two points on either side of the middle
plane. The value 2-817 of 00 at the faces of the plate, which is probably a slight over-
estimate of the actual value, is more than 6 9, different from the generalized plane stress
average value of 37". The percentage differences in the values of 66 at 6 = 0° from the
generalized plane stress average value of — 7" are somewhat greater, varying from 10 %,
in excess numerically to 19 9, below numerically.

TABLE 7
06/ T at 60)T at 00/ T at 00/ T at
18¢ 6=0° 6 = 90° 18¢ 6=0° 6 = 90°
0 —1-10 3-10 10 —-1-05 3-05
1 —1-10 310 11 —1-04 3:04
2 —-1-10 310 12 —1-02 3-:02
3 -1-10 3-10 13 —1-01 3-01
4 —1-09 3-09 14 —0-98 2-98
5 —1-09 3:09 15 —0-94 2:94
6 —1-08 3-08 16 —0-88 2-88
7 —1-08 3:08 17 —0-83 2-83
8 —1-08 3-08 18 —0-81 2-81
9 —1-07 3-07

At = 0° and f = 90° the maximum value of Zz is numerically about 0-277 and occurs
at the middle plane of the plate. It is a compression at § = 0° and a tension at ¢ = 90°.
These values are by no means negligible when compared with 00 at the same pomts,
particularly at 6 = 0°.

6:5. When a plate under tension in one direction contains a circular cylindrical hole
whose diameter is equal to the thickness of the plate it appears that, although the assump-
tions of the theory of generalized plane stress are open to question the theory does give
a fairly good estimate for the average values of stress concentration at the hole; also the
maximum value of the circumferential stress at the hole, which is of considerable interest
from the practical point of view, is only about 3 %, in excess of the average value as given by
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the generalized plane stress theory. The circumferential stress 66 at the hole is almost con-
stant in magnitude over the middle section of the plate, for a given value of 6, but there is
an appreciable variation in 60 near the faces of the plate, the greatest variations occurring
at the ends of the diameter of the hole which is parallel to the applied tension. In addition
there is a significant cross stress Zz at certain points of the hole. The points at which the
greatest differences between 80 and the generalized plane stress average value 06 occur
appear to be where 7z is not negligible compared with 66.

The writer wishes to thank Dr T. J. Willmore for checking important parts of the
analysis.
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